Saturday, 31 January 2015

HARD DISKS(about,history,working,capacity,etc.)


hard disk drive (HDD)[b] is a data storage device used for storing and retrieving digital information using rapidly rotating disks (platters) coated with magnetic material.[2] An HDD retains its data even when powered off. Data is read in a random-access manner, meaning individual blocks of data can be stored or retrieved in any order rather thansequentially. An HDD consists of one or more rigid ("hard") rapidly rotating disks (platters) with magnetic headsarranged on a moving actuator arm to read and write data to the surfaces.
Introduced by IBM in 1956,[3] HDDs became the dominant secondary storage device for general-purpose computers by the early 1960s. Continuously improved, HDDs have maintained this position into the modern era of servers andpersonal computers. More than 200 companies have produced HDD units, though most current units are manufactured by SeagateToshiba and Western Digital. Worldwide disk storage revenues were US $32 billion in 2013, down 3% from 2012.[4]
The primary characteristics of an HDD are its capacity and performance. Capacity is specified in unit prefixescorresponding to powers of 1000: a 1-terabyte (TB) drive has a capacity of 1,000 gigabytes (GB; where 1 gigabyte = 1 billion bytes). Typically, some of an HDD's capacity is unavailable to the user because it is used by the file system and the computer operating system, and possibly inbuilt redundancy for error correction and recovery. Performance is specified by the time required to move the heads to a track or cylinder (average access time) plus the time it takes for the desired sector to move under the head (average latency, which is a function of the physical rotational speed in revolutions per minute), and finally the speed at which the data is transmitted (data rate).
The two most common form factors for modern HDDs are 3.5-inch in desktop computers and 2.5-inch in laptops. HDDs are connected to systems by standard interface cables such as SATA (Serial ATA), USB or SAS (Serial attached SCSI) cables.
As of 2015, the primary competing technology for secondary storage is flash memory in the form of solid-state drives(SSDs). HDDs are the dominant medium for secondary storage due to advantages in price per unit of storage and recording capacity.[5][6] However, SSDs are replacing HDDs where speed, power consumption and durability are more important considerations.[7][8]

History

File:HardDisk1.ogg
Video of modern HDD operation (cover removed)
Improvement of HDD characteristics over time
ParameterStarted withDeveloped toImprovement
Capacity
(formatted)
3.75 megabytes[9]eight terabytestwo-million-to-one
Physical volume68 cubic feet (1.9 m3)[c][3]2.1 cubic inches(34 cc)[10]57,000-to-one
Weight2,000 pounds (910 kg)[3]2.2 ounces(62 g)[10]15,000-to-one
Average access timeabout 600 milliseconds[3]a few millisecondsabout
200-to-one
PriceUS$9,200 per megabyte[11][dubious ]< $0.05 per gigabyte by 2013[12]180-million-to-one
Areal density2,000 bits per square inch[13]826 gigabits per square inch in 2014[14]> 400-million-to-one
HDDs were introduced in 1956 as data storage for an IBM real-time transaction processing computer and were developed for use with general-purpose mainframe and minicomputers. The first IBM drive, the 350 RAMAC, was approximately the size of two refrigerators and stored five million six-bit characters (3.75 megabytes)[9] on a stack of 50 disks.
In 1962 IBM introduced the model 1311 disk drive, which was about the size of a washing machine and stored two million characters on a removable disk pack. Users could buy additional packs and interchange them as needed, much like reels ofmagnetic tape. Later models of removable pack drives, from IBM and others, became the norm in most computer installations and reached capacities of 300 megabytes by the early 1980s. Non-removable HDDs were called "fixed disk" drives.
Some high performance HDDs were manufactured with one head per track, e.g., IBM 2305so that no time was lost physically moving the heads to a track.[15] Known as Fixed-Head or Head-Per-Track disk drives they were very expensive and are no longer in production.[16]
In 1973, IBM introduced a new type of HDD codenamed "Winchester". Its primary distinguishing feature was that the disk heads were not withdrawn completely from the stack of disk platters when the drive was powered down. Instead, the heads were allowed to "land" on a special area of the disk surface upon spin-down, "taking off" again when the disk was later powered on. This greatly reduced the cost of the head actuator mechanism, but precluded removing just the disks from the drive as was done with the disk packs of the day. Instead, the first models of "Winchester technology" drives featured a removable disk module, which included both the disk pack and the head assembly, leaving the actuator motor in the drive upon removal. Later "Winchester" drives abandoned the removable media concept and returned to non-removable platters.
Like the first removable pack drive, the first "Winchester" drives used platters 14 inches (360 mm) in diameter. A few years later, designers were exploring the possibility that physically smaller platters might offer advantages. Drives with non-removable eight-inch platters appeared, and then drives that used a 5 14 in (130 mm) form factor (a mounting width equivalent to that used by contemporary floppy disk drives). The latter were primarily intended for the then-fledgling personal computer (PC) market.
As the 1980s began, HDDs were a rare and very expensive additional feature in PCs, but by the late 1980s their cost had been reduced to the point where they were standard on all but the cheapest computers.
Most HDDs in the early 1980s were sold to PC end users as an external, add-on subsystem. The subsystem was not sold under the drive manufacturer's name but under the subsystem manufacturer's name such as Corvus Systems and Tallgrass Technologies, or under the PC system manufacturer's name such as the Apple ProFile. The IBM PC/XT in 1983 included an internal 10 MB HDD, and soon thereafter internal HDDs proliferated on personal computers.
External HDDs remained popular for much longer on the Apple Macintosh. Every Mac made between 1986 and 1998 has a SCSI port on the back, making external expansion easy; also, "toaster" Compact Macs did not have easily accessible HDD bays (or, in the case of the Mac Plus, any hard drive bay at all), so on those models, external SCSI disks were the only reasonable option.
The 2011 Thailand floods damaged manufacturing plants, and impacted hard disk drive cost adversely in 2011-2013.[17]
Driven by ever increasing areal density since their invention, HDDs have continuously improved their characteristics; a few highlights are listed in the table above. At the same time, market application expanded from mainframe computers of the late 1950s to most mass storage applications including computers and consumer applications such as storage of entertainment content.

Technology

Magnetic cross section & frequency modulation encoded binary data

Magnetic recording

See also: Magnetic storage
An HDD records data by magnetizing a thin film of ferromagnetic material[d] on a disk. Sequential changes in the direction of magnetization represent binary data bits. The data is read from the disk by detecting the transitions in magnetization. User data is encoded using an encoding scheme, such as run-length limited encoding,[e] which determines how the data is represented by the magnetic transitions.
A typical HDD design consists of a spindle that holds flat circular disks, also called platters, which hold the recorded data. The platters are made from a non-magnetic material, usually aluminium alloy, glass, or ceramic, and are coated with a shallow layer of magnetic material typically 10–20 nm in depth, with an outer layer of carbon for protection.[19][20][21] For reference, a standard piece of copy paper is 0.07–0.18 millimetres (70,000–180,000 nm).[22]
Diagram labeling the major components of a computer HDD
Recording of single magnetisations of bits on a 200 MB HDD-platter (recording made visible using CMOS-MagView).[23]
The platters in contemporary HDDs are spun at speeds varying from 4,200 rpm in energy-efficient portable devices, to 15,000 rpm for high-performance servers.[24]The first HDDs spun at 1,200 rpm[3] and, for many years, 3,600 rpm was the norm.[25] As of December 2013, the platters in most consumer-grade HDDs spin at either 5,400 rpm or 7,200 rpm.
Information is written to and read from a platter as it rotates past devices called read-and-write heads that operate very close (often tens of nanometers) over the magnetic surface. The read-and-write head is used to detect and modify the magnetization of the material immediately under it.
In modern drives there is one head for each magnetic platter surface on the spindle, mounted on a common arm. An actuator arm (or access arm) moves the heads on an arc (roughly radially) across the platters as they spin, allowing each head to access almost the entire surface of the platter as it spins. The arm is moved using a voice coil actuator or in some older designs a stepper motor. Early hard disk drives wrote data at some constant bits per second, resulting in all tracks having the same amount of data per track but modern drives (since the 1990s) use zone bit recording—increasing the write speed from inner to outer zone and thereby storing more data per track in the outer zones.
In modern drives, the small size of the magnetic regions creates the danger that their magnetic state might be lost because of thermal effects, thermally induced magnetic instability which is commonly known as the "superparamagnetic limit." To counter this, the platters are coated with two parallel magnetic layers, separated by a 3-atom layer of the non-magnetic element ruthenium, and the two layers are magnetized in opposite orientation, thus reinforcing each other.[26] Another technology used to overcome thermal effects to allow greater recording densities is perpendicular recording, first shipped in 2005,[27] and as of 2007 the technology was used in many HDDs.[28][29][30]

Components

HDD with disks and motor hub removed exposing copper colored stator coils surrounding a bearing in the center of the spindle motor. Orange stripe along the side of the arm is thin printed-circuit cable, spindle bearing is in the center and the actuator is in the upper left
A typical HDD has two electric motors; a spindle motor that spins the disks and an actuator (motor) that positions the read/write head assembly across the spinning disks. The disk motor has an external rotor attached to the disks; the stator windings are fixed in place. Opposite the actuator at the end of the head support arm is the read-write head; thin printed-circuit cables connect the read-write heads to amplifier electronics mounted at the pivot of the actuator. The head support arm is very light, but also stiff; in modern drives, acceleration at the head reaches 550 g.
Head stack with an actuator coil on the left and read/write heads on the right
The actuator is a permanent magnet and moving coil motor that swings the heads to the desired position. A metal plate supports a squat neodymium-iron-boron (NIB) high-flux magnet. Beneath this plate is the moving coil, often referred to as the voice coil by analogy to the coil in loudspeakers, which is attached to the actuator hub, and beneath that is a second NIB magnet, mounted on the bottom plate of the motor (some drives only have one magnet).
The voice coil itself is shaped rather like an arrowhead, and made of doubly coated copper magnet wire. The inner layer is insulation, and the outer is thermoplastic, which bonds the coil together after it is wound on a form, making it self-supporting. The portions of the coil along the two sides of the arrowhead (which point to the actuator bearing center) interact with the magnetic field, developing a tangential force that rotates the actuator. Current flowing radially outward along one side of the arrowhead and radially inward on the other produces the tangential force. If the magnetic field were uniform, each side would generate opposing forces that would cancel each other out. Therefore the surface of the magnet is half N pole, half S pole, with the radial dividing line in the middle, causing the two sides of the coil to see opposite magnetic fields and produce forces that add instead of canceling. Currents along the top and bottom of the coil produce radial forces that do not rotate the head.
The HDD's electronics control the movement of the actuator and the rotation of the disk, and perform reads and writes on demand from the disk controller. Feedback of the drive electronics is accomplished by means of special segments of the disk dedicated to servo feedback. These are either complete concentric circles (in the case of dedicated servo technology), or segments interspersed with real data (in the case of embedded servo technology). The servo feedback optimizes the signal to noise ratio of the GMR sensors by adjusting the voice-coil of the actuated arm. The spinning of the disk also uses a servo motor. Modern disk firmware is capable of scheduling reads and writes efficiently on the platter surfaces and remapping sectors of the media which have failed.

Error rates and handling

Modern drives make extensive use of error correction codes (ECCs), particularly Reed–Solomon error correction. These techniques store extra bits, determined by mathematical formulas, for each block of data; the extra bits allow many errors to be corrected invisibly. The extra bits themselves take up space on the HDD, but allow higher recording densities to be employed without causing uncorrectable errors, resulting in much larger storage capacity.[31] For example, a typical 1 TB hard disk with 512-byte sectors provides additional capacity of about 93 GB for the ECC data.[32]
In the newest drives, as of 2009, low-density parity-check codes (LDPC) were supplanting Reed-Solomon; LDPC codes enable performance close to the Shannon Limit and thus provide the highest storage density available.[33]
Typical hard disk drives attempt to "remap" the data in a physical sector that is failing to a spare physical sector provided by the drive's "spare sector pool" (also called "reserve pool"),[34] while relying on the ECC to recover stored data while the amount of errors in a bad sector is still low enough. The S.M.A.R.T (Self-Monitoring, Analysis and Reporting Technology) feature counts the total number of errors in the entire HDD fixed by ECC (although not on all hard drives as the related S.M.A.R.T attributes "Hardware ECC Recovered" and "Soft ECC Correction" are not consistently supported), and the total number of performed sector remappings, as the occurrence of many such errors may predict an HDD failure.
The "No-ID Format", developed by IBM in the mid-1990s, contains information about which sectors are bad and where remapped sectors have been located.[35]
Only a tiny fraction of the detected errors ends up as not correctable. For example, specification for an enterprise SAS disk (a model from 2013) estimates this fraction to be one uncorrected error in every 1016 bits,[36] and another SAS enterprise disk from 2013 specifies similar error rates.[37] Another modern (as of 2013) enterprise SATA disk specifies an error rate of less than 10 non-recoverable read errors in every 1016 bits.[38] An enterprise disk with a Fibre Channel interface, which uses 520 byte sectors to support the Data Integrity Field standard to combat data corruption, specifies similar error rates in 2005.[39]
The worst type of errors are those that go unnoticed, and are not even detected by the disk firmware or the host operating system. These errors are known as silent data corruption, some of which may be caused by hard disk drive malfunctions.

Future development

Leading-edge hard disk drive areal densities from 1956 through 2009 compared to Moore's law
HDD areal density's long term exponential growth has been similar to a 41% per year Moore's law rate; the rate was 60–100% per year beginning in the early 1990s and continuing until about 2005,[41][42] an increase which Gordon Moore (1997) called "flabbergasting" and he speculated that HDDs had "moved at least as fast as the semiconductor complexity."[43]However, the rate decreased dramatically around 2006 and, during 2011–2014, growth was in the annual range of 5–10%.[44] Disk cost per byte improved nearly -45% per year during 1990–2010, and slowed after 2010 due to the Thailand floods and difficulty in migrating from perpendicular recording to newer technologies.[45][46][47] Moore (2005) further observed that growth cannot continue forever.[48]
Increasing areal density corresponds to an ever decreasing bit cell size. In 2013 a production desktop 3 TByte HDD (4 platters) would have had an areal density of about 500 Gbit/in2 which would have amounted to a bit cell comprising about 18 magnetic grains (11 by 1.6 grains).[49] Since the mid-2000s areal density progress has increasingly been challenged by asuperparamagnetic trilemma involving grain size, grain magnetic strength and ability of the head to write.[50] In order to maintain acceptable signal to noise smaller grains are required; smaller grains may self-reverse (thermal instability) unless their magnetic strength is increased, but known write head materials are unable to generate a magnetic field sufficient to write the medium. Several new magnetic storage technologies are being developed to overcome or at least abate this trilemma and thereby maintain the competitiveness of HDDs with respect to products such as flash memory-based solid-state drives (SSDs).
One such technology, shingled magnetic recording (SMR), was introduced in 2013 by Seagate as "the first step to reaching a 20 TB HDD by 2020";[51] Starting from the 8 TB hard drives of 2015, the pace of advancement would be 20% per year. However, SMR comes with design complexities that may slow write performance.[52][53] Other new recording technologies that, as of 2015, still remain under development include heat-assisted magnetic recording (HAMR),[54][55]microwave-assisted magnetic recording (MAMR),[56] two-dimensional magnetic recording (TDMR),[49][57] bit-patterned recording (BPR),[58] and "current perpendicular to plane" giant magnetoresistance (CPP/GMR) heads.[5
Depending upon assumptions on feasibility and timing of these technologies, the median forecast by industry observers and analysts for 2016 and beyond for areal density growth is 20% per year with a range of 10% to 40%.[49][62][63][64][65] The ultimate limit for the BPR technology may be the superparamagnetic limit of a single particle that is estimated to be about two orders of magnitude higher than the 500 Gbits/in2 density represented by 2013 production desktop HDDs

Saturday, 24 January 2015

MOTHERBOARD(history,working,types,etc.)

motherboard (sometimes alternatively known as the mainboardsystem boardplanar board or logic board,[1] or colloquially, a mobo) is the main printed circuit board (PCB) found in computers and other expandable systems. It holds many of the crucial electronic components of the system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard contains significant sub-systems such as the processor and other components.
Motherboard specifically refers to a PCB with expansion capability and as the name suggests, this board is the "mother" of all components attached to it, which often include sound cardsvideo cardsnetwork cardshard drives, or other forms of persistent storage; TV tuner cards, cards providing extra USB or FireWire slots and a variety of other custom components (the term mainboard is applied to devices with a single board and no additional expansions or capability, such as controlling boards in televisions, washing machines and other embedded systems).

History

Prior to the invention of the microprocessor, a digital computer consisted of multiple printed circuit boards in a card-cage case with components connected by abackplane, a set of interconnected sockets. In very old designs the wires were discrete connections between card connector pins, but printed circuit boards soon became the standard practice. The Central Processing Unit (CPU), memory, and peripherals were housed on individual printed circuit boards, which were plugged into the backplate.
During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard. In the late 1980s, personal computer motherboards began to include single ICs (also called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboardmousefloppy disk driveserial ports, and parallel ports. By the late-1990s, many personal computer motherboards supported a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component.
The most popular computers such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.

Design

The Octek Jaguar V motherboard from 1993.[2] This board has few onboard peripherals, as evidenced by the 6 slots provided for ISA cards and the lack of other built-in external interface connectors
The motherboard of a Samsung Galaxy SII; almost all functions of the device are integrated into a very small board
A motherboard provides the electrical connections by which the other components of the system communicate (talk with each other). Unlike a backplane, it also contains the central processing unit and hosts other subsystems and devices.
A typical desktop computer has its microprocessormain memory, and other essential components connected to the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.
An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.
Modern motherboards include:
Additionally, nearly all motherboards include logic and connectors to support commonly used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example, on the Apple II and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.
Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heat sinks and mounting points for fans to dissipate excess heat.

CPU sockets

CPU socket (central processing unit) or slot is an electrical component that attaches to a Printed Circuit Board (PCB) and is designed to house a CPU (also called a microprocessor). It is a special type of integrated circuit socket designed for very high pin counts. A CPU socket provides many functions, including a physical structure to support the CPU, support for a heat sink, facilitating replacement (as well as reducing cost), and most importantly, forming an electrical interface both with the CPU and the PCB. CPU sockets on the motherboard can most often be found in most desktop and server computers (laptops typically use surface mount CPUs), particularly those based on the Intel x86 architecture. A CPU socket type and motherboard chipset must support the CPU series and speed.

Integrated peripherals

Block diagram of a modern motherboard, which supports many on-board peripheral functions as well as several expansion slots
With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly integrated motherboards are thus especially popular in small form factor and budget computers.

Peripheral card slots

A typical motherboard of 2012 will have a different number of connections depending on its standard.
A standard ATX motherboard will typically have two or three PCI-E 16x connection for a graphics card, one or two legacy PCI slots for various expansion cards, and one or two PCI-E 1x (which has superseded PCI). A standard EATX motherboard will have two to four PCI-Express 16x connection for graphics cards, and a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot (will vary between brands and models).
Some motherboards have two or more PCI-E 16x slots, to allow more than 2 monitors without special hardware, or use a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 to 4 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming, video editing, etc.

Temperature and reliability

A motherboard of a Vaio E series laptop (right)
A microATX motherboard with some faulty capacitors
Main article: Computer cooling
Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the Northbridge, in modern motherboards. Insufficient or improper cooling can cause damage to the internal components of the computer, or cause it tocrashPassive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPU's until the late 1990s; since then, most have required CPU fans mounted on their heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS oroperating system can use to regulate fan speed. Some computers (which typically have high-performance microprocessors, large amounts of RAM, and high-performance video cards) use a water-cooling system instead of many fans.
Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and othercomponents to allow for heat sink placement.
A 2003 study found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards.[4] Ultimately this was shown to be the result of a faulty electrolyte formulation,[5] an issue termed capacitor plague.
Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C (221 °F),[6] their expected design life roughly doubles for every 10 °C (50 °F) below this. At 45 °C (113 °F) a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard. However, many manufacturers deliver substandard capacitors,[7] which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but time-consuming, to find and replace failed capacitors on personal computer motherboards.

Air pollution and reliability

High rates of motherboard failures in China and India appear to be due to "sulfurous air pollution produced by coal that's burned to generate electricity. Air pollution corrodes the circuitry, according to Intel researchers.[8]

Form factor

Motherboards are produced in a variety of sizes and shapes called computer form factor, some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible systems are designed to fit various case sizes. As of 2007, most desktop computer motherboards use the ATXstandard form factor — even those found in Macintosh and Sun computers, which have not been built from commodity components. A case's motherboard and PSU form factor must all match, though some smaller form factor motherboards of the same family will fit larger cases. For example, an ATX case will usually accommodate a microATX motherboard.
Laptop computers generally use highly integrated, miniaturized and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Bootstrapping using the Basic input output system

Motherboards contain some non-volatile memory to initialize the system and load some startup software, usually an operating system, from some external peripheral device. Microcomputers such as the Apple II and IBM PC used ROM chips mounted in sockets on the motherboard. At power-up, the central processor would load its program counter with the address of the boot ROM and start executing instructions from the ROM. These instructions initialized and tested the system hardware, displayed system information on the screen, performed RAM checks, and then loaded an initial program from an external or peripheral device (disk drive). If none was available, then the computer would perform tasks from other memory stores or display an error message, depending on the model and design of the computer and the ROM version. For example, both the Apple II and the original IBM PC had Microsoft Cassette BASIC in ROM and would start that if no program could be loaded from disk.
Most modern motherboard designs use a BIOS, stored in an EEPROM chip soldered to or socketed on the motherboard, to bootstrap an operating system. Non-operating system boot programs are still supported on modern IBM PC-descended machines, but nowadays it is assumed that the boot program will be a complex operating system such as MS Windows NT or Linux. When power is first supplied to the motherboard, the BIOS firmware tests and configures memory, circuitry, and peripherals. This Power-On Self Test (POST) may include testing some of the following things:
On recent motherboards, the BIOS may also patch the central processor microcode if the BIOS detects that the installed CPU is one for which errata have been published.

See also

References

  1. Jump up^ Miller, Paul (2006-07-08). "Apple sneaks new logic board into whining MacBook Pros". Engadget. Retrieved 2013-10-02.
  2. Jump up^ "Golden Oldies: 1993 mainboards". Retrieved 2007-06-27.
  3. Jump up^ W1zzard (2005-04-06). "Pinout of the PCI-Express Power Connector". techPowerUp. Retrieved 2013-10-02.
  4. Jump up^ c't Magazine, vol. 21, pp. 216-221. 2003.
  5. Jump up^ Chiu, Yu-Tzu; Moore, Samuel K. (2003-01-31). "Faults & Failures: Leaking Capacitors Muck up Motherboards". IEEE Spectrum. Archived from the original on 2003-02-03. Retrieved 2013-10-02.
  6. Jump up^ "Capacitor lifetime formula". Low-esr.com. Retrieved 2013-10-02.
  7. Jump up^ Carey Holzman The healthy PC: preventive care and home remedies for your computer McGraw-Hill Professional, 2003 ISBN 0-07-222923-3 page 174
  8. Jump up^ "Scientists studying pollution damage to computers". Missoulian. 2013-10-27. Retrieved 2013-10-27.

External links

  • Motherboard Form Factors - Silverstone Article
  • Motherboards at DMOZ
  • List of motherboard manufacturers and links to BIOS updates
  • What is a motherboard?
  • The Making of a Motherboard: ECS Factory Tour
  • The Making of a Motherboard: Gigabyte Factory Tour
  • Front Panel I/O Connectivity Design Guide - v1.3 (pdf file)