History
1910: An inductive discharge ignition system invented by Charles F. Kettering and his company (Delco) goes into production for Cadillac. This is a mechanically-switched version of a flyback boost converter with an autotransformer (the ignition coil). Variations of this ignition system are in all non-diesel internal combustion engines.
1926: "Electrical Condensors" by Coursey
[1] mentions high frequency
welding[2] and furnaces.
[1]
1970: High-Efficiency Power Supply produced from about 1970 to 1995.
[5][6][7][8]
1972:
HP-35, Hewlett-Packard's first pocket calculator, is introduced with transistor switching power supply for
light-emitting diodes, clocks, timing,
ROM, and registers.
[9]
1977:
Apple II is designed with a switching mode power supply. "
For its time (1977) it was a breakthrough, since until then switching mode power supplies weren’t used. Designed by Rod Holt,".
[11] "
Rod Holt was brought in as product engineer and there were several flaws in Apple II that were never publicized. One thing Holt has to his credit is that he created the switching power supply that allowed us to do a very lightweight computer".
[12]
Explanation
A
linear regulator provides the desired output
voltage by dissipating excess power in
ohmic losses (e.g., in a resistor or in the collector–emitter region of a pass transistor in its active mode). A linear regulator regulates either output voltage or current by dissipating the excess electric power in the form of
heat, and hence its maximum power efficiency is voltage-out/voltage-in since the volt difference is wasted.
In contrast, a switched-mode power supply regulates either output voltage or current by switching ideal storage elements, like
inductors and
capacitors, into and out of different electrical configurations. Ideal switching elements (e.g., transistors operated outside of their active mode) have no resistance when "closed" and carry no current when "open", and so the converters can theoretically operate with 100% efficiency (i.e., all input power is delivered to the load; no power is wasted as dissipated heat).
The basic schematic of a boost converter.
For example, if a DC source, an inductor, a switch, and the corresponding
electrical ground are placed in series and the switch is driven by a
square wave, the peak-to-peak voltage of the waveform measured across the switch can exceed the input voltage from the DC source. This is because the inductor responds to changes in current by inducing its own voltage to counter the change in current, and this voltage adds to the source voltage while the switch is open. If a diode-and-capacitor combination is placed in parallel to the switch, the peak voltage can be stored in the capacitor, and the capacitor can be used as a DC source with an output voltage greater than the DC voltage driving the circuit. This
boost converter acts like a
step-up transformer for DC signals. A
buck–boost converter works in a similar manner, but yields an output voltage which is opposite in polarity to the input voltage. Other buck circuits exist to boost the average output current with a reduction of voltage.
In a SMPS, the output current flow depends on the input power signal, the storage elements and circuit topologies used, and also on the pattern used (e.g.,
pulse-width modulation with an adjustable
duty cycle) to drive the switching elements. The
spectral density of these switching waveforms has energy concentrated at relatively high frequencies. As such, switching transients and
ripple introduced onto the output waveforms can be filtered with a small
LC filter.
Advantages and disadvantages
The main advantage of the switching power supply is greater efficiency because the switching transistor dissipates little power when acting as a switch. Other advantages include smaller size and lighter weight from the elimination of heavy line-frequency transformers, and lower heat generation due to higher efficiency. Disadvantages include greater complexity, the generation of high-amplitude, high-frequency energy that the low-pass filter must block to avoid
electromagnetic interference (EMI), a
ripple voltage at the switching frequency and the
harmonic frequencies thereof.
Very low cost SMPSs may couple electrical switching noise back onto the mains power line, causing interference with A/V equipment connected to the same phase. Non-
power-factor-corrected SMPSs also cause harmonic distortion.
Theory of operation
Block diagram of a mains operated AC/DC SMPS with output voltage regulation
Input rectifier stage
AC, half-wave and full-wave rectified signals.
If the SMPS has an AC input, then the first stage is to convert the input to DC. This is called
rectification. A SMPS with a DC input does not require this stage. In some power supplies (mostly computer ATX power supplies), the rectifier circuit can be configured as a voltage doubler by the addition of a switch operated either manually or automatically. This feature permits operation from power sources that are normally at 115 V or at 230 V. The rectifier produces an unregulated DC voltage which is then sent to a large filter capacitor. The current drawn from the mains supply by this rectifier circuit occurs in short pulses around the AC voltage peaks. These pulses have significant high frequency energy which reduces the power factor. To correct for this, many newer SMPS will use a special
PFC circuit to make the input current follow the sinusoidal shape of the AC input voltage, correcting the power factor. Power supplies that use
Active PFC usually are auto-ranging, supporting input voltages from
~100 VAC – 250 VAC, with no input voltage selector switch.
A SMPS designed for AC input can usually be run from a DC supply, because the DC would pass through the rectifier unchanged.
[16] If the power supply is designed for
115 VAC and has no voltage selector switch, the required DC voltage would be
163 VDC (115 × √
2). This type of use may be harmful to the rectifier stage, however, as it will only use half of diodes in the rectifier for the full load. This could possibly result in overheating of these components, causing them to fail prematurely. On the other hand, if the power supply has a voltage selector switch for 115/230V (computer ATX power supplies typically are in this category), the selector switch would have to be put in the
230 V position, and the required voltage would be
325 VDC (230 × √
2). The diodes in this type of power supply will handle the DC current just fine because they are rated to handle double the nominal input current when operated in the
115 V mode, due to the operation of the voltage doubler. This is because the doubler, when in operation, uses only half of the bridge rectifier and runs twice as much current through it.
[17] It is uncertain how an Auto-ranging/Active-PFC type power supply would react to being powered by DC.
Inverter stage
- This section refers to the block marked chopper in the diagram.
The inverter stage converts DC, whether directly from the input or from the rectifier stage described above, to AC by running it through a power oscillator, whose output transformer is very small with few windings at a frequency of tens or hundreds of
kilohertz. The frequency is usually chosen to be above 20 kHz, to make it inaudible to humans. The switching is implemented as a multistage (to achieve high gain)
MOSFET amplifier. MOSFETs are a type of
transistor with a low on-
resistance and a high current-handling capacity.
Voltage converter and output rectifier
If the output is required to be isolated from the input, as is usually the case in mains power supplies, the inverted AC is used to drive the primary winding of a high-frequency
transformer. This converts the voltage up or down to the required output level on its secondary winding. The output transformer in the block diagram serves this purpose.
If a
DC output is required, the
AC output from the transformer is rectified. For output voltages above ten volts or so, ordinary silicon diodes are commonly used. For lower voltages,
Schottky diodes are commonly used as the rectifier elements; they have the advantages of faster recovery times than silicon diodes (allowing low-loss operation at higher frequencies) and a lower voltage drop when conducting. For even lower output voltages, MOSFETs may be used as
synchronous rectifiers; compared to Schottky diodes, these have even lower conducting state voltage drops.
The rectified output is then smoothed by a filter consisting of
inductors and
capacitors. For higher switching frequencies, components with lower capacitance and inductance are needed.
Simpler, non-isolated power supplies contain an inductor instead of a transformer. This type includes
boost converters,
buck converters, and the
buck-boost converters. These belong to the simplest class of single input, single output converters which use one inductor and one active switch. The buck converter reduces the input voltage in direct proportion to the ratio of conductive time to the total switching period, called the duty cycle. For example an ideal buck converter with a 10 V input operating at a 50% duty cycle will produce an average output voltage of 5 V. A feedback control loop is employed to regulate the output voltage by varying the duty cycle to compensate for variations in input voltage. The output voltage of a
boost converter is always greater than the input voltage and the buck-boost output voltage is inverted but can be greater than, equal to, or less than the magnitude of its input voltage. There are many variations and extensions to this class of converters but these three form the basis of almost all isolated and non-isolated DC to DC converters. By adding a second inductor the
Ćuk and
SEPICconverters can be implemented, or, by adding additional active switches, various bridge converters can be realized.
Regulation
This charger for a small device such as a mobile phone is a simple off-line switching power supply with a European plug.
A
feedback circuit monitors the output voltage and compares it with a reference voltage, as shown in the block diagram above. Depending on design and safety requirements, the controller may contain an isolation mechanism (such as an
opto-coupler) to isolate it from the DC output. Switching supplies in computers, TVs and VCRs have these opto-couplers to tightly control the output voltage.
Open-loop regulators do not have a feedback circuit. Instead, they rely on feeding a constant voltage to the input of the transformer or inductor, and assume that the output will be correct. Regulated designs compensate for the
impedance of the transformer or coil. Monopolar designs also compensate for the
magnetic hysteresis of the core.
The feedback circuit needs power to run before it can generate power, so an additional non-switching power-supply for stand-by is added.
Transformer design
Any switched-mode power supply that gets its power from an AC power line (called an "off-line" converter
[18]) requires a transformer for
galvanic isolation. Some
DC-to-DC converters may also include a transformer, although isolation may not be critical in these cases. SMPS transformers run at high frequency. Most of the cost savings (and space savings) in off-line power supplies result from the smaller size of the high frequency transformer compared to the 50/60 Hz transformers formerly used. There are additional design tradeoffs.
The terminal voltage of a transformer is proportional to the product of the core area, magnetic flux, and frequency. By using a much higher frequency, the core area (and so the mass of the core) can be greatly reduced. However, core losses increase at higher frequencies. Cores generally use
ferrite material which has a low loss at the high frequencies and high flux densities used. The laminated iron cores of lower-frequency (<400 Hz) transformers would be unacceptably lossy at switching frequencies of a few kilohertz. Also, more energy is lost during transitions of the switching semiconductor at higher frequencies. Furthermore, more attention to the physical layout of the
circuit board is required as
parasitics become more significant, and the amount of
electromagnetic interference will be more pronounced.
Copper loss
Main article:
Copper loss
At low frequencies (such as the line frequency of 50 or 60 Hz), designers can usually ignore the
skin effect. For these frequencies, the skin effect is only significant when the conductors are large, more than 0.3 inches (7.6 mm) in diameter.
Switching power supplies must pay more attention to the skin effect because it is a source of power loss. At 500 kHz, the skin depth in copper is about 0.003 inches (0.076 mm) – a dimension smaller than the typical wires used in a power supply. The effective resistance of conductors increases, because current concentrates near the surface of the conductor and the inner portion carries less current than at low frequencies.
The skin effect is exacerbated by the harmonics present in the high speed
PWM switching waveforms. The appropriate skin depth is not just the depth at the fundamental, but also the skin depths at the harmonics.
[19]
In addition to the skin effect, there is also a
proximity effect, which is another source of power loss.
Power factor
Simple off-line switched mode power supplies incorporate a simple full-wave rectifier connected to a large energy storing capacitor. Such SMPSs draw current from the AC line in short pulses when the mains instantaneous voltage exceeds the voltage across this capacitor. During the remaining portion of the AC cycle the capacitor provides energy to the power supply.
As a result, the input current of such basic switched mode power supplies has high
harmonic content and relatively low power factor. This creates extra load on utility lines, increases heating of building wiring, the utility
transformers, and standard AC electric motors, and may cause stability problems in some applications such as in emergency generator systems or aircraft generators. Harmonics can be removed by filtering, but the filters are expensive. Unlike displacement power factor created by linear inductive or capacitive loads, this distortion cannot be corrected by addition of a single linear component. Additional circuits are required to counteract the effect of the brief current pulses. Putting a current regulated boost chopper stage after the off-line rectifier (to charge the storage capacitor) can correct the power factor, but increases the complexity and cost.
In 2001, the European Union put into effect the standard IEC/EN61000-3-2 to set limits on the harmonics of the AC input current up to the 40th harmonic for equipment above 75 W. The standard defines four classes of equipment depending on its type and current waveform. The most rigorous limits (class D) are established for personal computers, computer monitors, and TV receivers. To comply with these requirements, modern switched-mode power supplies normally include an additional
power factor correction (PFC) stage.
Types
Switched-mode power supplies can be classified according to the circuit topology. The most important distinction is between isolated converters and non-isolated ones.
Efficiency and EMI
Higher input voltage and synchronous rectification mode makes the conversion process more efficient. The power consumption of the controller also has to be taken into account. Higher switching frequency allows component sizes to be shrunk, but can produce more
RFI. A resonant forward converter produces the lowest
EMI of any SMPS approach because it uses a soft-switching
resonant waveform compared with conventional hard switching.
Failure modes
Power supplies which use capacitors suffering from the
capacitor plague may experience premature failure when the capacitance drops to 4% of the original value.
[not in citation given] This usually causes the switching semiconductor to fail in a conductive way. That may expose connected loads to the full input volt and current, and precipitate wild oscillations in output.
[29]
Failure of the switching transistor is common. Due to the large switching voltages this transistor must handle (around 325 V for a 230 VAC mains supply), these transistors often short out, in turn immediately blowing the main internal power fuse.
Precautions
The main filter capacitor will often store up to 325 volts long after the power cord has been removed from the wall. Not all power supplies contain a small "bleeder" resistor to slowly discharge this capacitor. Any contact with this capacitor may result in a severe electrical shock.
The primary and secondary sides may be connected with a capacitor to reduce
EMI and compensate for various capacitive couplings in the converter circuit, where the transformer is one. This may result in electric shock in some cases. The current flowing from
line or
neutral through a
2000 Ω resistor to any accessible part must, according to
IEC 60950, be less than
250 μA for IT equipment.
[30]
Applications
Switched mode mobile phone charger
Switched-mode power supply units (PSUs) in domestic products such as
personal computers often have universal inputs, meaning that they can accept power from
mains supplies throughout the world, although a manual voltage range switch may be required. Switch-mode power supplies can tolerate a wide range of
power frequencies and voltages.
Due to their high volumes
mobile phone chargers have always been particularly cost sensitive. The first chargers were
linear power supplies but they quickly moved to the cost effective ringing choke converter (RCC) SMPS topology, when new levels of efficiency were required. Recently, the demand for even lower no-load power requirements in the application has meant that flyback topology is being used more widely; primary side sensing flyback controllers are also helping to cut the
bill of materials(BOM) by removing secondary-side sensing components such as
optocouplers.
[citation needed]
Switched-mode power supplies are used for DC to DC conversion as well. In automobiles where heavy vehicles use a nominal24 VDC cranking supply, 12 volts for accessories may be furnished through a DC/DC switch-mode supply. This has the advantage over tapping the battery at the 12 volt position (using half the cells) that all the 12 volt load is evenly divided over all cells of the 24 volt battery. In industrial settings such as telecommunications racks, bulk power may be distributed at a low DC voltage (from a battery back up system, for example) and individual equipment items will have DC/DC switched-mode converters to supply whatever voltages are needed.
Terminology
The term switchmode was widely used until
Motorola claimed ownership of the trademark SWITCHMODE, for products aimed at the switching-mode power supply market, and started to enforce their trademark.
[18] Switching-mode power supply,
switching power supply, and
switching regulator refer to this type of power supply
No comments:
Post a Comment